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The formation of the Vlslon-21 conference held three years ago allowed the present author to
reflect and speculate on the problem of converting electromagnetic energy to a direct current by
essentially reversing the process used in traveling wave tubes that converts energy in the form
of a direct current to electromagnetic energy. The idea was to use the electric field of the
electromagnetic wave to produce electrons through the field emission process and accelerate
these electrons by the same field to produce an electric current across a large potential
difference. The acceleration process was that of cyclotron auto-resonance. Since that time,
this rather speculative idea has been developed into a method that shows great promise and for
which a patent is pending and a prototype design will be demonstrated in a potential laser
power beaming application. From the point of view of the author, a forum such as Vision-21 is
becoming an essential component in the rather conservative climate in which our initiatives
for space exploration are presently formed. Exchanges such as Vision-21 not only allow us to
deviate from the '"oy-the-book" approach and rediscover the ability and power of imagination,
but provides for the discussion of ideas hitherto considered "crazy" so that they may be given
the chance to transcend from the level of eccentricity to applicability.

The advent of future space and planetary exploration for the 21st

century has precipitated the usual considerations of energy transfer,

particularly in the form of electrical power, to support various exploration

activities. Even point-to-point power transmission to earth from space or

between two points on earth is being reconsidered. 1 The need to distribute

energy from a minimal number of centralized sources in an efficient manner

has given rise to the reconsideration of microwave power transmission and

its related conversion to useful electrical power. However, such con-

siderations, especially those of the well known Microwave Power

Transmission System Study procured by NASA in 1975, have been

traditionally impeded by the constraints induced by the use of relaUvely long

wavelengths (i.e, centimeter wavelengths at the proposed operating

frequency of 2.45 GHzl and the attendant large transmitting and receiving

structures with the prevailing small coupling efflciencies. These drawbacks

have stimulated interest in the use of smaller wavelengths, e.g., those

peculiar to high energy carbon dioxide or free electron lasers the
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wavelengths of which are 10,000 times smaller than microwave

wavelengths, thus allowing the use of electrodynamic structures 10,000

smaller than those at the microwave wavelengths. In particular, this "laser

power beaming" has been recently proposed 2 for ground-to-space energy

transmission as well as for low earth orbit (LEO) to geosynchronous orbit

(GEO) payload delivery via plasma engine propulsion.

This paper will address one area of this multifaceted problem, viz, the

conversion of energy which resides in a received electromagnetic field to

that which is in the form of a direct current across a potential difference

which can be used to provide electric power for a number of space and

planetary applications. The novel method for electromagnetic wave power

rectification to be described here is applicable over a wide range of

wavelengths within the electromagnetic spectrum. More importantly,

however, it can be made to have the capability to be entirely "passive", i.e.,

not having to rely on additional energy sources, other than the received

electromagnetic field, to induce the creation of electrons which constitutes

the resulting direct current.

In particular, a conversion process will briefly be presented that

demonstrates how, by establishing a traveling electromagnetic wave field

within a three mirror traveling- wave open resonator, electrons are accel-

erated by the wave, via the action of one of two possible traveling- wave

acceleration mechanisms, to several times their rest energy, thus

establishing an electric current over a large potential difference. The

electrons needed in this process can also issue from one of several possible

mechanisms; they can be "actively" created by thermionic emission which,

of course, would require the need for an auxiliary power source, or they can

be "passively" created by field emission (i.e., cold emission) processes

through the action of the resonator field on an array of field emission

cathodes or surfaces appropriately placed on one of the three resonator

mirrors. The open resonator design of this rectifcaUon process allows for

its use in the frequency spectrum from the quasi- optical frequencies of

about 90 GHz to the infrared frequencies in the Terahertz range. The

method is depicted in Figure I and its three novel features, i.e., the use of a

quasi-optical diffraction grating to act analogously as a microwave directional

coupler, the use of a passive electron emission process, and the subsequent
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Figure 1
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acceleration of these electrons by the traveling-wave field established within

the resonator, will now be discussed in what is to follow. Only the most

important highlights that have issued from a detailed theoretical analysis

will be presented.

Quasi-Optical Directional Coupler -A Diffraction/Reflection Grating

The introduction into the three mirror resonator of the

electromagnetic field, the energy of which is to be converted to direct

current, occurs by the use of a diffraction/reflection grating which is not

only operated in the usual reflection mode, but also in a diffraction mode. As

is well known, the grating action scatters the incident beam of wavelength

_., occurring at an angle of incidence 0 i, into diffracted beams oriented

along angles On that are given by

n_.
sin0n= sin01+ _ ; -d 3' n=0,±1,±2 ....

where d is the grating spacing. Each of the diffracted beams has associated

with it a corresponding reflection coefficient r n . As these
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coefficients are a function of the grating material as well as the groove

depth, the grating structure can be selected so as to support only two

diffracted beams 3, viz, the n=0 beam, which is the classical reflected beam

at the angle 81=O 0, and the n=-I beam which is a retro-refiected beam at the

angle O_ 1 given by

sin0 1 = sin0 i- -_

The associated reflection coefficients are related, through conservation of

energy (assuming the grating material has negligible absorption), by the

relationship
2 2

r0+r_l =I

As shown in Figure 2, it is the n=-I beam that couples the incident energy

into the cavity, and thus suggests that the coefficient r_ I should be

maximized. However, the same diffractive process occurs on the other side

of the grating and tends to couple energy back out of the cavity. Thus, r_ l

cannot be arbitrarily maximized without constraints. A complete analysis

incorporating the power incident into the cavity, the energy which resides

in the traveling wave field, as well as that which is coupled out of the cavity,

and the normalized beam current I a due to the subsequent electron

acceleration which occurs between two of the three cavity mirrors, yields

the optimal values for r_ l given by

(+++-,+,II3--jLT+ - v.oojj

where Yaee is the attenuation incurred by the traveling wave in the

accelerator portion of the cavity and Ytot is the total attenuation of the wave
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field around the entire length L of the cavity. Of course, the beam current

In will be a function of the particular acceleration mechanism chosen as

well as a function of the cavity field strength. Hence, even though one can

visualize a non-linear problem forming, it is obvious how one can proceed in

designing and implementing a diffraction/reflection grating to couple power

into the cavity as well as sustaining the traveling wave process within the

cavity in the presence of electron acceleration by the wave field.

Electrons for the Acceleration Process

Electrons with which the direct current is created, as well as the

large potential difference by their subsequent acceleration, can most easily

be introduced into the traveling wave field of the cavity by the suitable

placement of an electron gun behind the mirror which follows the

diffraction/reflection grating. This "active" electron production technique

would require the use of a small auxiliary power source to provide for the

thermionic emission. Although such a scenario would provide for a

respectable power conversion method, it will inherently have a smaller

conversion efficiency since one must count the auxiliary power source as a

loss. Furthermore, the need to carry such an auxiliary source with the

power converter can add weight to a mission as well as decrease the

reliability of the operation of the power converter. Thus, maintaining this

active method of electron production as a last alternative, one is motivated

to consider "passive" methods of electron production such as is realized in

cold field emission.

Recent advances in the materials and production of arrays of field

emission cathodes (FEC) make considerations of such passive electron

production possible 4. What is envisioned is an array of FEC's placed in the

center of the mirror where the electric field of the traveling wave will have

its largest value. With a nominal value of the work function of about 2 eV for

typical FEC materials and a tip magnification factor of 13=1000, calculations

via Fowler-Nordheim theory show that an electric field strength within the

resonator of 1 x 106 V/m is required at the tip of these cathodes to elicit a
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current density of about 50 A/cm2 from them. Such field strengths place a

lower limit on the operation of this passive generation scheme.

One can also consider other electron emission schemes such as liquid

metal field emission s , etc. Further considerations of field strength versus

breakdown voltages, ohmic heating, etc., will help define the particular field

emission method to be employed.

Finally, although the energy at which the electrons are emitted will be

described by an distribution over a range of values, it is sufficient to assume

that they are certainly non-relativistic at this point and they therefore are

approximately represented by their rest energy _0.

Traveling- Wave Electron Acceleration

Once the electrons have been generated by one of the mechanisms

discussed above, it remains to provide a mechanism through which energy

can be transferred from the electromagnetic traveling wave field to the

electrons. The first obvious choice is to employ cyclotron auto-resonance

acceleration6 by establishing a constant magnetic field directed

longitudinally along the acceleration axis. Here, the condition

I v_(z) 1 coB(z)
y(z 1 _- --

v,(z) ] =

must always be maintained between the electron velocity vz(z)along the

acceleration axis (taken here to be the z-axis), the associated relativistic

factor _(z), the Larmor or cyclotron frequency C0B(Z), the phase velocity v_(z)

of the traveling wave field (all of which are, in general, functions of the

position z along the acceleration axis), and the angular frequency of the

traveling wave field Co. In the case of the open resonator structure

considered here, its mode of operation will be such that v_(z)-c.

Furthermore, since the initial velocity of the emitted electrons (at the point

z=0) is such that 7(0) =l, one sees from the above relation that
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eB(0)
¢/)a(0) =---- = 0)

me

where B(0) is the intensity of the magnetic field needed at the beginning of

acceleration, e is the electron charge, and m is its mass.

Hence, one sees that for a wave frequency of 10 GHz, i.e., co= 6.28 x

1010 s -1, B(0) -- 3.5 kG, an easily realizable magnetic field using light weight

magnetic materials. However, at 100 GHz, one has B(0) - 35kG which starts

to require the use of much larger and heavier magnetic materials. As

frequencies higher than 100 GHz are approached, physically unachievable

magnetic fields are required. Thus, the use of cyclotron auto-resonance is

not a viable acceleration scheme for this power conversion process if it is to

be considered at the infrared or optical frequencies proposed for laser

power beaming.

One can exploit the spatial and temporal structure of a pulsed gaussian

beam that would appear in the resonator in the case of pulsed laser beaming,

and discover another possible electron acceleration mechanism. This

mechanism, especially its use in this particular application, must remain

proprietary due to the pending patent disclosure of this rectification

process, and cannot be disclosed in its entirety at this time. However, it is

possible to state that the region of applicability of this second traveling wave

acceleration process is defined by the constraint

v (O) %(0)
-- >> 2_(0)_

C

which significantly eases the requirements for a magnetic field. In the case

of a wave field of a wavelength of 10.6 }_m (a typical CO2 laser wavelength),

i.e., co 1.7x 1014 s -I, and taking Vz(0)/c 1.0x 10 -2= = , one finds that B(0) < 6

kG. Of course, there are other restrictions incorporating the spatial

dimensions of the acceleration region, but they are not as stringent as the

one just stated.

Suffice it to say that the acceleration process will give the electrons a

final energy of _T as they reach the opposite reflector which, in this case,
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becomes the cathode in the DC conversion process. Thus, the energy

absorbed by the electrons during the acceleration process is _T- _0 thus

inducing a potential difference V between the two cavity reflectors of

_T - _0
V-

e

Analysis shows that the energy gained by the electrons in this process is

proportional to the square of the electric field strength within the cavity.

Problems That Remain to be Solved

Of the several potential problem areas that will most likely become

apparent, the most obvious one has to do with heat dissipation due to losses

incurred in whatever material is used for the reflectors. Related to this,

there is the issue of material erosion on the reflector that is to collect the

accelerated electrons. Hopefully these obstacles can be overcome during a

prototype development of this electromagnetic wave rectification method.
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